Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Foot-and-mouth disease virus has been crystallized with the objectives of (1) determining the composition and conformation of the major immunogenic site(s) and (2) comparing its structure with those of the related polio, rhino and Mengo viruses, representing the other three genera of the picornaviruses. Most of the work has been done with virus strain O1BFS 1860, which crystallized as small rhombic dodecahedra of maximum dimension 0.3 mm. Virus recovered from crystals was infectious, and was indistinguishable from native virus both in protein composition and buoyant density. The stability of the crystals in the X-ray beam was comparable with that of other picornavirus crystals and they diffracted to a resolution of better than 2.3 A. Initial analysis of the X-ray diffraction data shows the virus to be positioned on a point of 23 symmetry in a close-packed array so that examples of all the icosahedral symmetry elements, except the 5-fold axes, are expressed crystallographically. The cell dimensions are a = b = c = 345 A, alpha = beta = gamma = 90 degrees, with a space group of I23. The diameter of the virus particle is 300 A. Despite the small size of the crystals, diffraction data have been collected to a reasonable resolution using a synchrotron source. Phasing of the diffraction data will be attempted using the methods of molecular replacement.

Type

Journal article

Journal

J Mol Biol

Publication Date

05/08/1987

Volume

196

Pages

591 - 597

Keywords

Aphthovirus, Centrifugation, Density Gradient, Crystallization, Electrophoresis, Polyacrylamide Gel, Microscopy, Electron, X-Ray Diffraction