Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The vaccinia virus (VV) A27L gene encodes a 14 kDa protein that is required for the formation of intracellular enveloped virus (IEV) and, consequently, normal sized plaques. Data presented here show that A27L plays an additional role in VV assembly. When cells were infected with the VV WR32-7/Ind 14K, under conditions that repress A27L expression, transport of intracellular mature virus (IMV) from virus factories was inhibited and some IMV was found in aberrant association with virus crescents. In contrast, other VV mutants (vΔB5R and vΔF13L) that are defective in IEV formation produce IMV particles that are transported out of virus factories. This indicated a specific role for A27L in IMV transport. Induction of A27L expression at 10 h post-infection promoted the dispersal of clustered IMV particles, but only when microtubules were intact. Formation of IEV particles was also impaired when cells were infected with WR32-7/14K, a VV strain expressing a mutated form of the A27L protein; however, this mutation did not inhibit intracellular transport of IMV particles. Collectively, these data define two novel aspects of VV morphogenesis. Firstly, A27L is required for both IMV transport and the process of envelopment that leads to IEV formation. Secondly, movement of IMV particles between the virus factory and the site of IEV formation is microtubule-dependent.

Original publication

DOI

10.1099/0022-1317-81-1-47

Type

Journal

Microbiology

Publisher

Microbiology Society

Publication Date

01/01/2000

Volume

81

Pages

47 - 58