Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One of the major challenges in prostate cancer (PCa) research is the identification of key players that control the progression of primary cancers to invasive and metastatic disease. The majority of metastatic PCa express wild-type p53, whereas loss of p63 expression, a p53 family member, is a common event. Here we identify inhibitor of apoptosis-stimulating protein of p53 (iASPP), a common cellular regulator of p53 and p63, as an important player of PCa progression. Detailed analysis of the prostate epithelium of iASPP transgenic mice, iASPP(Δ8/Δ8) mice, revealed that iASPP deficiency resulted in a reduction in the number of p63 expressing basal epithelial cells compared with that seen in wild-type mice. Nuclear and cytoplasmic iASPP expression was greater in PCa samples compared with benign epithelium. Importantly nuclear iASPP associated with p53 accumulation in vitro and in vivo. A pair of isogenic primary and metastatic PCa cell lines revealed that nuclear iASPP is enriched in the highly metastatic PCa cells. Nuclear iASPP is often detected in PCa cells located at the invasive leading edge in vivo. Increased iASPP expression associated with metastatic disease and PCa-specific death in a clinical cohort with long-term follow-up. These results suggest that iASPP function is required to maintain the expression of p63 in normal basal prostate epithelium, and nuclear iASPP may inactivate p53 function and facilitate PCa progression. Thus iASPP expression may act as a predictive marker of PCa progression.

Original publication




Journal article


Cell death & disease

Publication Date





e1492 - e1492


1] Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building (off Roosevelt Drive), Headington, Oxford, UK [2] Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building (off Roosevelt Drive), Headington, Oxford, UK.


Prostate, Epithelium, Cell Line, Tumor, Cell Nucleus, Animals, Humans, Mice, Prostatic Neoplasms, Neoplasm Invasiveness, Disease Progression, Intracellular Signaling Peptides and Proteins, Tumor Suppressor Proteins, Repressor Proteins, Prognosis, Coculture Techniques, Multivariate Analysis, Cohort Studies, Cell Differentiation, Phosphorylation, Phenotype, Adult, Aged, Middle Aged, Male, Biomarkers, Tumor