Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent studies in prehypertensive spontaneously hypertensive rats (SHR) have shown larger calcium transients and reduced norepinephrine transporter (NET) activity in cultured stellate neurons compared with Wistar-Kyoto (WKY) controls, although the functional significance of these results is unknown. We hypothesized that peripheral sympathetic responsiveness in the SHR at 4 wk of age would be exaggerated compared with the WKY. In vivo arterial pressure (under 2% isoflurane) was similar in SHRs (88 ± 2/50 ± 3 mmHg, n = 18) compared with WKYs (88 ± 3/49 ± 4 mmHg, n = 20). However, a small but significant (P < 0.05) tachycardia was observed in the young SHR despite the heart rate response to vagus stimulation (3 and 5 Hz) in vivo being similar (SHR: n = 12, WKY: n = 10). In isolated atrial preparations there was a significantly greater tachycardia during right stellate stimulation (5 and 7 Hz) in SHRs (n = 19) compared with WKYs (n = 16) but not in response to exogenous NE (0.025-5 μM, SHR: n = 10, WKY: n = 10). There was also a significantly greater release of [(3)H]NE to field stimulation (5 Hz) of atria in the SHR (SHR: n = 17, WKY: n = 16). Additionally, plasma levels of neuropeptide Y sampled from the right atria in vivo were also higher in the SHR (ELISA, n = 12 for both groups). The difference in [(3)H]NE release between SHR and WKY could be normalized by the NET inhibitor desipramine (1 μM, SHR: n = 10, WKY: n = 8) but not the α2-receptor antagonist yohimbine (1 μM, SHR: n = 7, WKY: n = 8). Increased cardiac sympathetic neurotransmission driven by larger neuronal calcium transients and reduced NE reuptake translates into enhanced cardiac sympathetic responsiveness at the end organ in prehypertensive SHRs.

Original publication

DOI

10.1152/ajpheart.00255.2013

Type

Journal article

Journal

Am J Physiol Heart Circ Physiol

Publication Date

01/10/2013

Volume

305

Pages

H980 - H986

Keywords

autonomic neurotransmission, cardiac, hypertension, spontaneously hypertensive rat, sympathetic, vagal, Adrenergic Uptake Inhibitors, Adrenergic alpha-2 Receptor Antagonists, Animals, Arterial Pressure, Calcium Signaling, Disease Models, Animal, Electric Stimulation, Heart, Heart Rate, Hypertension, Male, Neuropeptide Y, Norepinephrine, Prehypertension, Rats, Rats, Inbred SHR, Rats, Inbred WKY, Stellate Ganglion, Sympathetic Nervous System, Time Factors, Vagus Nerve