Model of the equine rhinitis A virus capsid: identification of a major neutralizing immunogenic site.
Kriegshäuser G., Wutz G., Lea S., Stuart D., Skern T., Kuechler E.
Mouse monoclonal antibodies (mAbs) were employed to select neutralization escape mutants of equine rhinitis A virus (ERAV). Amino acid changes in the ERAV mutants resulting in resistance to neutralization were identified in capsid protein VP1 at Lys-114, Pro-240 and Thr-241. Although the changes were located in different parts of the polypeptide chain, these mutants exhibited cross-resistance against all four mAbs employed, indicating that these residues contribute to a single immunogenic site. To explain this result, we constructed a model of the three-dimensional structure of the ERAV capsid based on comparison with the closely related foot-and-mouth disease virus (FMDV O(1)). According to this model, VP1 is folded so that Lys-114 is in the beta E-beta F loop of the polypeptide chain at a considerable distance from Pro-240 and Trp-241 in the C-terminal region. However, around the fivefold axis of symmetry, the C terminus of VP1 in each protomer extends to the beta E-beta F loop of the adjacent VP1 in the next protomer. We therefore propose that the immunogenic site in ERAV is formed as a result of the close proximity of the Lys-114 residue in the beta E-beta F loop of one VP1 molecule and of the Pro-240/Thr-241 residues in the adjacent VP1 polypeptide chain. In terms of the overall architecture of the viral capsid structure, this site in ERAV most closely resembles the immunogenic site 1 of FMDV O(1).