Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Digital pathology continues to gain momentum, with the promise of artificial intelligence to aid diagnosis and for assessment of features which may impact prognosis and clinical management. Successful adoption of these technologies depends upon the quality of digitised whole-slide images (WSI); however, current quality control largely depends upon manual assessment, which is inefficient and subjective. We previously developed PathProfiler, an automated image quality assessment tool, and in this feasibility study we investigate its potential for incorporation into a diagnostic clinical pathology setting in real-time. A total of 1254 genitourinary WSI were analysed by PathProfiler. PathProfiler was developed and trained on prostate tissue and, of the prostate biopsy WSI, representing 46% of the WSI analysed, 4.5% were flagged as potentially being of suboptimal quality for diagnosis. All had concordant subjective issues, mainly focus-related, 54% severe enough to warrant remedial action which resulted in improved image quality. PathProfiler was less reliable in assessment of non-prostate surgical resection-type cases, on which it had not been trained. PathProfiler shows potential for incorporation into a digitised clinical pathology workflow, with opportunity for image quality improvement. Whilst its reliability in the current form appears greatest for assessment of prostate specimens, other specimen types, particularly biopsies, also showed benefit.

Original publication




Journal article





Publication Date





990 - 990