Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

CTL are held to be an important host defense mechanism in persistent herpes-virus infections. We have therefore studied the nature and specificity of human cytomegalovirus (HCMV)-specific CTL in normal persistently infected individuals. This was achieved by using vaccinia recombinants encoding viral genes expressed at different stages of the virus replicative cycle, a structural glycoprotein gB (vac.gB) and the major 72-kD immediate early nonstructural protein (vac.IE) of HCMV, combined with limiting dilution analysis of the CTL response. In two subjects, 43 and 58% of HCMV CTL precursors (CTLp) lysed vac.IE-infected cells, in contrast to less than 6% lysing gB-infected cells. HCMV-specific CTL could also be generated by secondary in vitro stimulation with vac.gB- but not vac.IE-infected autologous fibroblasts. The high frequency of 72-kD IE protein-specific CTL suggests that this is at least a major recognition element for the HCMV-specific CTL response in asymptomatic persistently infected individuals, and CTL with this specificity may be important in maintaining the normal virus/host equilibrium.

Original publication

DOI

10.1084/jem.168.3.919

Type

Journal article

Journal

Journal of Experimental Medicine

Publisher

Rockefeller University Press

Publication Date

01/09/1988

Volume

168

Pages

919 - 931