Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vaccinia virus (VACV) encodes scores of proteins that suppress host innate immunity and many of these target intracellular signalling pathways leading to activation of inflammation. The transcription factor NF-κB plays a critical role in the host response to infection and is targeted by many viruses, including VACV that encodes 12 NF-κB inhibitors that interfere at different stages in this signalling pathway. Here we report that VACV proteins C2 and F3 are additional inhibitors of this pathway. C2 and F3 are BTB-Kelch proteins that are expressed early during infection, are non-essential for virus replication, but affect the outcome of infection in vivo. Using reporter gene assays, RT-qPCR analyses of endogenous gene expression, and ELISA, these BTB-Kelch proteins are shown here to diminish NF-κB activation by reducing translocation of p65 into the nucleus. C2 and F3 are the 13th and 14th NF-κB inhibitors encoded by VACV. Remarkably, in every case tested, these individual proteins affect virulence in vivo and therefore have non-redundant functions. Lastly, immunisation with a VACV strain lacking C2 induced a stronger CD8+ T cell response and better protection against virus challenge.

Original publication




Journal article


Journal of General Virology


Microbiology Society

Publication Date