Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract ‘Exhaustion’ is a term used to describe a state of native and redirected T-cell hypo-responsiveness resulting from persistent antigen exposure during chronic viral infections or cancer. Although a well-established phenotype across mice and humans, exhaustion at the molecular level remains poorly defined and inconsistent across the literature. This is, in part, due to an overreliance on surface receptors to define these cells and explain exhaustive behaviours, an incomplete understanding of how exhaustion arises, and a lack of clarity over whether exhaustion is the same across contexts, e.g. chronic viral infections versus cancer. With the development of systems-based genetic approaches such as single-cell RNA-seq and CRISPR screens applied to in vivo data, we are moving closer to a consensus view of exhaustion, although understanding how it arises remains challenging given the difficulty in manipulating the in vivo setting. Accordingly, producing and studying exhausted T-cells ex vivo are burgeoning, allowing experiments to be conducted at scale up and with high throughput. Here, we first review what is currently known about T-cell exhaustion and how it’s being studied. We then discuss how improvements in their method of isolation/production and examining the impact of different microenvironmental signals and cell interactions have now become an active area of research. Finally, we discuss what the future holds for the analysis of this physiological condition and, given the diversity of ways in which exhausted cells are now being generated, propose the adoption of a unified approach to clearly defining exhaustion using a set of metabolic-, epigenetic-, transcriptional-, and activation-based phenotypic markers, that we call ‘M.E.T.A’.

Original publication

DOI

10.1093/oxfimm/iqad006

Type

Journal article

Journal

Oxford Open Immunology

Publisher

Oxford University Press (OUP)

Publication Date

12/01/2023

Volume

4