Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

As different SARS-CoV-2 variants emerge and with the continuous evolvement of sub lineages of the delta variant, it is crucial that all countries carry out sequencing of at least >1% of their infections, in order to detect emergence of variants with higher transmissibility and with ability to evade immunity. However, due to limited resources as many resource poor countries are unable to sequence adequate number of viruses, we compared to usefulness of a two-step commercially available multiplex real-time PCR assay to detect important single nucleotide polymorphisms (SNPs) associated with the variants and compared the sensitivity, accuracy and cost effectiveness of the Illumina sequencing platform and the Oxford Nanopore Technologies' (ONT) platform. 138/143 (96.5%) identified as the alpha and 36/39 (92.3%) samples identified as the delta variants due to the presence of lineage defining SNPs by the multiplex real time PCR, were assigned to the same lineage by either of the two sequencing platforms. 34/37 of the samples sequenced by ONT had <5% ambiguous bases, while 21/37 samples sequenced using Illumina generated <5%. However, the mean PHRED scores averaged at 32.35 by Illumina reads but 10.78 in ONT. This difference results in a base error probability of 1 in 10 by the ONT and 1 in 1000 for Illumina sequencing platform. Sub-consensus single nucleotide variations (SNV) are highly correlated between both platforms (R2 = 0.79) while indels appear to have a weaker correlation (R2 = 0.13). Although the ONT had a slightly higher error rate compared to the Illumina technology, it achieved higher coverage with a lower number or reads, generated less ambiguous bases and was significantly less expensive than Illumina sequencing technology.

Original publication

DOI

10.1371/journal.pone.0265220

Type

Journal article

Journal

PloS one

Publication Date

01/2022

Volume

17

Addresses

Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

Keywords

Humans, High-Throughput Nucleotide Sequencing, Real-Time Polymerase Chain Reaction, Whole Genome Sequencing, COVID-19, SARS-CoV-2