Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Efavirenz is a second-generation non-nucleoside inhibitor of HIV-1 reverse transcriptase (RT) that has recently been approved for use against HIV-1 infection. Compared with first-generation drugs such as nevirapine, efavirenz shows greater resilience to drug resistance mutations within HIV-1 RT. In order to understand the basis for this resilience at the molecular level and to help the design of further-improved anti-AIDS drugs, we have determined crystal structures of efavirenz and nevirapine with wild-type RT and the clinically important K103N mutant. RESULTS: The relatively compact efavirenz molecule binds, as expected, within the non-nucleoside inhibitor binding pocket of RT. There are significant rearrangements of the drug binding site within the mutant RT compared with the wild-type enzyme. These changes, which lead to the repositioning of the inhibitor, are not seen in the interaction with the first-generation drug nevirapine. CONCLUSIONS: The repositioning of efavirenz within the drug binding pocket of the mutant RT, together with conformational rearrangements in the protein, could represent a general mechanism whereby certain second-generation non-nucleoside inhibitors are able to reduce the effect of drug-resistance mutations on binding potency.


Journal article



Publication Date





1089 - 1094


Amino Acid Substitution, Anti-HIV Agents, Benzoxazines, Binding Sites, Crystallography, X-Ray, Drug Resistance, Microbial, HIV Reverse Transcriptase, HIV-1, Humans, Models, Molecular, Mutation, Nevirapine, Oxazines, Protein Binding, Protein Conformation, Reverse Transcriptase Inhibitors, Structure-Activity Relationship