Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Folic acid (FA) intake has been associated with increased breast cancer risk in some studies. Although underlying mechanisms are unknown, epigenetic modifications that persistently alter transcription have been suggested. We tested the hypothesis that high FA (HFA) intake alters the adult mammary transcriptome in a manner consistent with increased potential for carcinogenesis, detectable beyond the period of intake. C57BL/6 mice were fed control FA (CFA) (1 mg/kg diet) or HFA (5 mg/kg diet) diets for 4 weeks, followed by AIN93M maintenance diet for 4 weeks. Plasma 5-methyltetrahydrofolate, p-aminobenzoylglutamate and unmetabolised FA concentrations were greater (1.62, 1.56, 5.80-fold, respectively) in HFA compared to CFA mice. RNA sequencing of the mammary transcriptome (~20 million reads) showed 222 transcripts (191 upregulated) differentially expressed between groups. Gene Set Enrichment showed upregulated genes significantly enriched in Epithelial Mesenchymal Transition, Myogenesis and Apical Junction and downregulated genes in E2F targets, MYC targets and G2M checkpoint. Cancer was the most altered Disease and Disorder pathway, with Metastasis, Mammary Tumour and Growth of Tumour the most upregulated pathways. ChIP-seq enrichment analysis showed that targets of histone methyltransferase EZH2 were enriched in HFA mice. This study demonstrates HFA intake during adulthood induces mammary transcriptome changes, consistent with greater tumorigenic potential.

Original publication

DOI

10.3390/nu12092821

Type

Journal article

Journal

Nutrients

Publisher

MDPI AG

Publication Date

15/09/2020

Volume

12

Pages

2821 - 2821