Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

<jats:p> Resting subjects risk cardiac arrest if plasma potassium ([K+]p) is raised rapidly to 7–9 mM, but brief bouts of exhaustive exercise in healthy subjects can give similar [K+]p without causing cardiac problems. We investigated the effects of [K+]p and catecholamines on systolic blood pressure (SBP) and mean aortic flow (MAF) in anesthetized rabbits and on maximum output pressure (MOP) in isolated working rabbit hearts. In six rabbits, hyperkalemia (11.4 +/- 0.4 mM) caused a fall in SBP from 116 +/- 6 to 49 +/- 6 mmHg and in MAF from 373 +/- 30 to 181 +/- 53 ml/min (P &lt; 0.01). Raising [K+]p (11.6 +/- 0.3 mM) with norepinephrine (NE) (1.3 micrograms.kg-1.min-1 iv), however, increased SBP from 108 +/- 7 to 150 +/- 6 mmHg (P &lt; 0.01) and MAF from 347 +/- 42 to 434 +/- 35 ml/min (P &lt; 0.01). In 19 isolated working hearts, perfusion with 8 mM K+ Tyrode and then 12 mM K+ Tyrode reduced MOP from 87 +/- 3 (control 4 mM K+) to 67 +/- 3 (8 mM K+) and 51 +/- 2 cmH2O (12 mM K+) (P &lt; 0.01); 12 mM K+ Tyrode with 0.08 microM NE or epinephrine, however, increased MOP from 67 +/- 6 (in 8 mM K+) to 85 +/- 6 cmH2O (NE) and from 58 +/- 2 to 76 +/- 5 cmH2O (epinephrine) (P &lt; 0.01). Catecholamines may therefore play a key role in protecting the heart from exercise-induced hyperkalemia. </jats:p>

Original publication

DOI

10.1152/jappl.1992.73.4.1413

Type

Journal article

Journal

Journal of Applied Physiology

Publisher

American Physiological Society

Publication Date

01/10/1992

Volume

73

Pages

1413 - 1418