Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many adhesion receptors have high three-dimensional dissociation constants (Kd) for counter-receptors compared to the KdS of receptors for soluble extracellular ligands such as cytokines and hormones. Interaction of the T lymphocyte adhesion receptor CD2 with its counter-receptor, LFA-3, has a high solution-phase Kd (16 microM at 37 degrees C), yet the CD2/LFA-3 interaction serves as an effective adhesion mechanism. We have studied the interaction of CD2 with LFA-3 in the contact area between Jurkat T lymphoblasts and planar phospholipid bilayers containing purified, fluorescently labeled LFA-3. Redistribution and lateral mobility of LFA-3 were measured in contact areas as functions of the initial LFA-3 surface density and of time after contact of the cells with the bilayers. LFA-3 accumulated at sites of contact with a half-time of approximately 15 min, consistent with the previously determined kinetics of adhesion strengthening. The two-dimensional Kd for the CD2/LFA-3 interaction was 21 molecules/microns 2, which is lower than the surface densities of CD2 on T cells and LFA-3 on most target or stimulator cells. Thus, formation of CD2/LFA-3 complexes should be highly favored in physiological interactions. Comparison of the two-dimensional (membrane-bound) and three-dimensional (solution-phase) KdS suggest that cell-cell contact favors CD2/LFA-3 interaction to a greater extent than that predicted by the three-dimensional Kd and the intermembrane distance at the site of contact. LFA-3 molecules in the contact site were capable of lateral diffusion in the plane of the phospholipid bilayer and did not appear to be irreversibly trapped in the contact area, consistent with a rapid off-rate. These data provide insights into the function of low affinity interactions in adhesion.

Original publication

DOI

10.1083/jcb.132.3.465

Type

Journal article

Journal

Journal of Cell Biology

Publisher

Rockefeller University Press

Publication Date

01/02/1996

Volume

132

Pages

465 - 474