Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Natural killer T (NKT) cells are innate-like lymphocytes that rapidly secrete large amounts of effector cytokines upon activation. Recognition of α-linked glycolipids presented by CD1d leads to the production of IL-4, IFN-γ, or both, while direct activation by the synergistic action of IL-12 and IL-18 leads to IFN-γ production only. We previously reported that in vitro cultured dendritic cells can modulate NKT cell activation and, using intravital fluorescence laser scanning microscopy, we reported that the potent stimulation of NKT cells results in arrest within hepatic sinusoids. In this study, we examine the relationship between murine NKT cell patrolling and activation. We report that NKT cell arrest results from activation driven by limiting doses of a bacteria-derived weak agonist, galacturonic acid-containing glycosphingolipid, or a synthetic agonist, α-galactosyl ceramide. Interestingly, NKT cell arrest also results from IL-12 and IL-18 synergistic activation. Thus, innate cytokines and natural microbial TCR agonists trigger sinusoidal NKT cell arrest and an effector response.

Original publication

DOI

10.4049/jimmunol.180.4.2024

Type

Journal article

Journal

The Journal of Immunology

Publisher

The American Association of Immunologists

Publication Date

15/02/2008

Volume

180

Pages

2024 - 2028