Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

To thrive in ever-changing environments, systems must be able to adapt their actions to respond appropriately to the stimuli they receive. These adaptive systems, or agents, exist at all scales, from microscopic bacteria to self-driving vehicles. Common to all is that they interact and compete with other agents, mounting a drive to develop and deploy increasingly complex strategies. This requires the agent to track ever more information about past and present events, imposing a performance bottleneck and making tools for efficient distillation of relevant information essential. We show that quantum processing can provide a competitive edge, by allowing agents to execute considerably more complex strategies than classical counterparts with access to the same memory capacity.We pinpoint precisely which quantum effects are behind these advantages and what structures an agent should adopt to maximize efficiency, allowing them to execute more complex strategies with a smaller memory. We provide a systematic means of encoding strategies for quantum agents that harness these advantages. Moreover, we show that the quantum enhancement in efficiency can scale without bound.The utility of these findings extends beyond the agents themselves. Agent-based modeling and adaptive systems permeate the quantitative sciences; our work highlights the beneficial role quantum technologies can play in these endeavors.

Original publication

DOI

10.1103/PhysRevX.12.011007

Type

Journal article

Journal

Physical Review X

Publication Date

01/03/2022

Volume

12