Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The structural relationships between substrate and pyridoxal phosphate in glycogen phosphorylase b (EC have been studied by X-ray diffraction experiments at 3-A resolution. Recent work [Klein, H. W., Im, M. J., & Helmreich, E. J. M. (1984) in Chemical and Biological Aspects of Vitamin B6 Catalysis (Evangelopoulos, A. E., Ed.) pp 147-160, Liss, New York] has shown that phosphorylase in the presence of inorganic phosphate catalyzes the conversion of heptenitol to heptulose 2-phosphate. The latter compound is a dead-end product and a most potent inhibitor (Ki = 14 microM). The X-ray diffraction studies show that heptenitol binds at the catalytic site of phosphorylase in a position essentially identical with that observed for the glucopyranose moiety of glucose 1-phosphate. Incubation of a phosphorylase b crystal for 50 h in a solution containing the substrates heptenitol and inorganic phosphate and the activators AMP and maltohetaose resulted in the formation of a phosphorylated product bound at the active site. The structure of this product, as analyzed by a difference Fourier synthesis at 3 A, is consistent with that of heptulose 2-phosphate. Analysis of the surrounding soak solution by thin-layer chromatography showed that heptulose 2-phosphate was produced under these conditions. Heptulose 2-phosphate binds with its glucopyranose moiety in the same position as that for glucose 1-phosphate, but there is a marked difference in phosphate positions. The presence of the methyl group in the beta-configuration in heptulose 2-phosphate forces a change in the torsion angle O5-C1-O1-P from 117 degrees as observe in glucose 1-phosphate to -136 degrees in heptulose 2-phosphate. The "down" position of the phosphate (with respect to the crystallographic z axis) results in a change in the distance between the 5'-phosphorus atom of the pyridoxal phosphate and the phosphorus atom of the substrate from 6.8 (with glucose 1-phosphate) to 4.5 A (with heptulose 2-phosphate). The closest distance between the phosphate oxygen of the cofactor and a phosphate oxygen of heptulose 2-phosphate is 2.7 A, and it is assumed that there must be a hydrogen bond between them. These observations are consistent with the NMR experiments reported in the preceding paper in which sharing of a proton between heptulose 2-phosphate and pyridoxal 5'-phosphate is observed [Klein, H.W., Im, M. J., Palm, D., & Helmreich, E. J. M. (1984) Biochemistry (preceding paper in this issue)].(ABSTRACT TRUNCATED AT 400 WORDS)


Journal article



Publication Date





5862 - 5873


Adenosine Monophosphate, Animals, Binding Sites, Chemical Phenomena, Chemistry, Physical, Crystallization, Glucans, Glucosephosphates, Muscles, Phosphorylase b, Phosphorylases, Protein Conformation, Pyridoxal Phosphate, Rabbits, Sugar Alcohols, Sugar Phosphates, X-Ray Diffraction