Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The co-transmitter neuropeptide Y (NPY), released during prolonged cardiac sympathetic nerve stimulation, can attenuate vagal-induced bradycardia. We tested the hypothesis that NPY reduces acetylcholine release, at similar concentrations to which it attenuates vagal bradycardia, via pre-synaptic Y2 receptors modulating a pathway that is dependent on protein kinase A (PKA) or protein kinase C (PKC). The Y2 receptor was immunofluorescently colocalized with choline acetyl-transferase containing neurons at the guinea pig sinoatrial node. The effect of NPY in the presence of various enzyme inhibitors was then tested on the heart rate response to vagal nerve stimulation in isolated guinea pig sinoatrial node/right vagal nerve preparations and also on (3)H-acetylcholine release from right atria during field stimulation. NPY reduced the heart rate response to vagal stimulation at 1, 3 and 5 Hz (significant at 100 nM and reaching a plateau at 250 nM NPY, p<0.05, n=6) but not to the stable analogue of acetylcholine, carbamylcholine (30, 60 or 90 nM, n=6) which produced similar degrees of bradycardia. The reduced vagal response was abolished by the Y2 receptor antagonist BIIE 0246 (1 microM, n=4). NPY also significantly attenuated the release of (3)H-acetylcholine during field stimulation (250 nM, n=6). The effect of NPY (250 nM) on vagal bradycardia was abolished by the PKC inhibitors calphostin C (0.1 microM, n=5) and chelerythrine chloride (25 microM, n=6) but not the PKA inhibitor H89 (0.5 microM, n=6). Conversely, the PKC activator Phorbol-12-myristate-13-acetate (0.5 microM, n=7) mimicked the effect of NPY and significantly reduced (3)H-acetylcholine release during field stimulation. These results show that NPY attenuates vagal bradycardia via a pre-synaptic decrease in acetylcholine release that appears to be mediated by a Y2 receptor pathway involving modulation of PKC.

Original publication

DOI

10.1016/j.yjmcc.2007.10.001

Type

Journal article

Journal

J Mol Cell Cardiol

Publication Date

03/2008

Volume

44

Pages

477 - 485

Keywords

Acetylcholine, Animals, Arginine, Benzazepines, Bradycardia, Carbachol, Choline O-Acetyltransferase, Cyclic AMP-Dependent Protein Kinases, Female, Guinea Pigs, Heart Rate, Immunohistochemistry, Isoquinolines, Neuropeptide Y, Protein Kinase C, Receptors, Neuropeptide Y, Signal Transduction, Sinoatrial Node, Sulfonamides, Vagus Nerve