T Cell Responses to Whole SARS Coronavirus in Humans
Li CK-F., Wu H., Yan H., Ma S., Wang L., Zhang M., Tang X., Temperton NJ., Weiss RA., Brenchley JM., Douek DC., Mongkolsapaya J., Tran B-H., Lin C-LS., Screaton GR., Hou J-L., McMichael AJ., Xu X-N.
Abstract Effective vaccines should confer long-term protection against future outbreaks of severe acute respiratory syndrome (SARS) caused by a novel zoonotic coronavirus (SARS-CoV) with unknown animal reservoirs. We conducted a cohort study examining multiple parameters of immune responses to SARS-CoV infection, aiming to identify the immune correlates of protection. We used a matrix of overlapping peptides spanning whole SARS-CoV proteome to determine T cell responses from 128 SARS convalescent samples by ex vivo IFN-γ ELISPOT assays. Approximately 50% of convalescent SARS patients were positive for T cell responses, and 90% possessed strongly neutralizing Abs. Fifty-five novel T cell epitopes were identified, with spike protein dominating total T cell responses. CD8+ T cell responses were more frequent and of a greater magnitude than CD4+ T cell responses (p < 0.001). Polychromatic cytometry analysis indicated that the virus-specific T cells from the severe group tended to be a central memory phenotype (CD27+/CD45RO+) with a significantly higher frequency of polyfunctional CD4+ T cells producing IFN-γ, TNF-α, and IL-2, and CD8+ T cells producing IFN-γ, TNF-α, and CD107a (degranulation), as compared with the mild-moderate group. Strong T cell responses correlated significantly (p < 0.05) with higher neutralizing Ab. The serum cytokine profile during acute infection indicated a significant elevation of innate immune responses. Increased Th2 cytokines were observed in patients with fatal infection. Our study provides a roadmap for the immunogenicity of SARS-CoV and types of immune responses that may be responsible for the virus clearance, and should serve as a benchmark for SARS-CoV vaccine design and evaluation.