Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The sensitivity of the αβ T cell receptor (TCR) is enhanced by the coreceptors CD4 and CD8αβ, which are expressed primarily by cells of the helper and cytotoxic T cell lineages, respectively. The coreceptors bind to major histocompatibility complex (MHC) molecules and associate intracellularly with the Src-family kinase Lck, which catalyzes TCR phosphorylation during receptor triggering. Although coreceptor/kinase occupancy was initially believed to be high, a recent study suggested that most coreceptors exist in an Lck-free state, and that this low occupancy helps to effect TCR antigen discrimination. Here, using the same method, we found instead that the CD4/Lck interaction was stoichiometric (~100%) and that the CD8αβ/Lck interaction was substantial (~60%). We confirmed our findings in live cells using fluorescence cross-correlation spectroscopy (FCCS) to measure coreceptor/Lck codiffusion in situ. After introducing structurally guided mutations into the intracellular domain of CD4, we used FCCS to also show that stoichiometric coupling to Lck required an amphipathic α-helix present in CD4 but not CD8α. In double-positive cells expressing equal numbers of both coreceptors, but limiting amounts of kinase, CD4 outcompeted CD8αβ for Lck. In T cells, TCR signaling induced CD4/Lck oligomerization but did not affect the high levels of CD4/Lck occupancy. These findings help settle the question of kinase occupancy and suggest that the binding advantages that CD4 has over CD8 could be important when Lck levels are limiting.

Original publication

DOI

10.1073/pnas.2213538119

Type

Journal article

Journal

Proceedings of the National Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Publication Date

06/12/2022

Volume

119