Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

HIV-2 infection in the majority of infected subjects follows an attenuated disease course that distinguishes it from infection with HIV-1. Antigen-specific T cells are pivotal in the management of chronic viral infections but are not sufficient to control viral replication in HIV-1-positive subjects, and their function in HIV-2 infection is not fully established. In a community-based cohort of HIV-2 long-term nonprogressors in rural Guinea-Bissau, we performed what we believe is the first comprehensive analysis of HIV-2-specific immune responses. We demonstrate that Gag is the most immunogenic protein. The magnitude of the IFN-γ immune response to the HIV-2 proteome was inversely correlated with HIV-2 viremia, and this relationship was specifically due to the targeting of Gag. Furthermore, patients with undetectable viremia had greater Gag-specific responses compared with patients with high viral replication. The most frequently recognized peptides clustered within a defined region of Gag, and responses to a single peptide in this region were associated with low viral burden. The consistent relationship between Gag-specific immune responses and viremia control suggests that T cell responses are vital in determining the superior outcome of HIV-2 infection. A better understanding of how HIV-2 infection is controlled may identify correlates of effective protective immunity essential for the design of HIV vaccines.

Original publication

DOI

10.1172/JCI32380

Type

Journal article

Journal

Journal of Clinical Investigation

Publication Date

01/10/2007

Volume

117

Pages

3067 - 3074